Conectado com
FACE

Bovinos / Grãos / Máquinas Tecnologia

Cientistas usam drones com câmeras inclinadas para monitorar gado no pasto

Pesquisas demonstraram que o ângulo inclinado da câmera amplia a visão da área de pasto e reduz a quantidade de voos necessários e os efeitos prejudiciais à atividade de detecção dos animais

Publicado em

em

Gisele Rosso

Imagens oblíquas  e tecnologias de aprendizado profundo (deep learning), como as redes neurais computacionais, chamadas convolucionais, têm se revelado promissoras para a detecção e contagem de gado no pasto por meio de drones. É o que indicam resultados preliminares de estudos descritos no artigo Cattle Detection Using Oblique UAV Images (Detecção de gado usando imagens UAV oblíquas), publicado em dezembro pela revista Drones. A sigla em inglês UAV refere-se a veículos aéreos não tripulados (vants). É o primeiro estudo explorando a viabilidade do uso de imagens oblíquas para monitoramento de gado.

A aplicação de algoritmos de inteligência artificial ao processamento digital de imagens e os avanços dessas tecnologias vêm mostrando a viabilidade desse monitoramento por meio das aeronaves não tripuladas. “Entretanto, o uso prático ainda é um desafio, devido às características particulares dessa aplicação, como a necessidade de rastrear alvos móveis e as extensas áreas que precisam ser cobertas na maioria dos casos”, alertam os pesquisadores Jayme Garcia Arnal Barbedo e Luciano Vieira Koenigkan, da Embrapa Informática Agropecuária (SP), e Patrícia Menezes Santos, da Embrapa Pecuária Sudeste (SP), autores do artigo.

Os cientistas investigaram, então, o uso de um ângulo inclinado da câmera do drone para aumentar a área coberta pelas imagens, de forma a minimizar problemas no rastreamento. A captura das imagens sob uma visão oblíqua, ao ampliar a cobertura, reduz o número de voos exigidos para a atividade, especialmente em áreas extensas, e diminui os efeitos prejudiciais do movimento dos animais e das mudanças nas condições ambientais. Estudos que empregam vants para o monitoramento de gado quase sempre usam imagens capturadas na posição perpendicular ao solo.

No processo, os pesquisadores aplicaram uma arquitetura computacional de redes neurais profundas para gerar os modelos aplicados aos experimentos. Foram cobertos aspectos variados, como dimensões ideais das imagens, efeito da distância entre animais e sensor, efeito do erro de classificação no processo geral de detecção e impacto dos obstáculos físicos na precisão do modelo.

Resultados experimentais indicam que imagens oblíquas podem ser usadas com sucesso sob certas condições, mas têm limitações práticas e técnicas que devem ser observadas. Essas limitações referem-se às obstruções de visão, à determinação das bordas exatas da região considerada nas imagens, às distorções geométricas e de cores, entre outras. Investigações futuras devem incluir uma análise de custo-benefício para estimar vantagens potenciais das imagens oblíquas em comparação com as medidas necessárias para reduzir os obstáculos práticos.

Os experimentos foram realizados com o objetivo de detectar animais, uma etapa intermediária para a contagem do rebanho.

Contagem precisa

A parte prática do trabalho foi realizada nos sistemas extensivo, intensivo e de integração Lavoura-Pecuária (ILP) na fazenda Canchim, sede da Embrapa Pecuária Sudeste. Para 2020, estava prevista a coleta de dados em áreas com árvores e arbustos, mas a pandemia atrasou os experimentos.

Segundo Patrícia Santos, árvores, arbustos ou até a altura da pastagem podem dificultar a captação de imagens. “O animal fica escondido embaixo da planta, atrapalhando a contagem. Para gerar um modelo que corrija isso, seriam necessárias várias imagens em áreas com árvores e com plantas arbustivas diferentes e de formas heterogêneas. Qualquer coisa que possa cobrir a imagem, até mesmo a altura de um capim, deve ser considerada. Por exemplo, a pastagem muito alta pode esconder um bezerro”, explica. São muitas as variáveis que a máquina precisa aprender para que a contagem do gado seja a mais precisa possível.

A cientista conta que o papel da Embrapa Pecuária Sudeste é ajudar a identificar os gargalos que podem surgir quando o pecuarista aplicar a ferramenta no dia a dia da fazenda. Indicar qual é a real necessidade de um potencial usuário desse produto, além de estimar a margem de erro aceitável. “Um levantamento para fins de inventário não permite erro. Já no caso da contagem de gado para o manejo, pode ser um pouco mais flexível”, destaca Santos.

Os pesquisadores também ressaltam que é fundamental ampliar o conhecimento sobre essas técnicas, para que no futuro a tecnologia seja adotada com sucesso no campo. “Os resultados foram muito bons, mas ainda precisamos de mais avanços para conseguir gerar uma tecnologia apta a ser usada por produtores ou prestadores de serviços. Acredito que estamos no caminho certo”, avalia Barbedo. Ele estima que o monitoramento com drones para contagem automática dos animais ocorra em cerca de dois a três anos.

A metodologia pode ser usada também, no futuro, para o monitoramento voltado à saúde animal, como a detecção de doenças e anomalias e eventos como prenhez. Para esse caso, o horizonte é de cinco anos.

Monitoramento a cavalo

O manejo de fazendas de gado de corte em sistema de produção extensivo é desafiador, especialmente considerando que muitas fazendas possuem grandes áreas com difícil acesso terrestre e insuficiente infraestrutura de comunicação. Nessas condições, o monitoramento do solo a cavalo é prática comum. A alternativa da inspeção aérea do rebanho requer voos tripulados, caros e sujeitos a alguns riscos.

O pecuarista Renato Alves Pereira, dono de uma propriedade na região da Zona da Mata Mineira (MG), diz que a contagem do gado em sua fazenda de 830 hectares é feita por dois funcionários a cavalo. E o custo também é elevado. Ele gasta R$ 78 mil a cada ano. A conferência é realizada semanalmente.

Esse tipo de manejo normalmente requer que os animais sejam reunidos no curral. A saída da rotina por si só já é um fator de estresse ao animal. Tanto no percurso até o curral quanto durante o manejo, o gado pode deixar de se alimentar, beber água e descansar. Pesquisas indicam que situações estressantes causam impactos diretos no bem-estar e na produtividade do rebanho.

Uma ferramenta para a contagem de gado por drone pode ser considerada mais racional. Para Renato Pereira, que trabalha com pecuária de corte há 40 anos, as principais vantagens de uma tecnologia como essa seriam a redução dos custos da contagem física e a otimização desse processo. “Se a tecnologia se tornar operacional, tenho interesse em utilizá-la”, afirma.

Modelos computacionais

As pesquisas voltadas à detecção e contagem de bovinos por meio de imagens capturadas por drones tiveram início em fevereiro de 2019, com vigência de dois anos. Contam com apoio financeiro da Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp). Os recursos de cerca de R$ 175 mil foram investidos, principalmente, na aquisição de drones e equipamentos para processamento de imagens.

Nos estudos, conduzidos pela Embrapa em parceria com a Universidade Estadual de Campinas (Unicamp) e as Faculdades Metropolitanas Unidas (FMU), a equipe capturou um grande número de imagens aéreas de animais das raças Nelore (Bos indicus) e Canchim – cruzamento entre as raças Charolês (Bos taurus) e Nelore, na fazenda da Embrapa. Em seguida, usou algoritmos para classificá-las e extrair as informações de interesse. No caso de monitoramento de gado, as aplicações incluem detecção e contagem de animais, reconhecimento de espécimes, medição da distância entre a vaca e o bezerro, e determinação do comportamento alimentar.

Essas informações contidas nas imagens são extraídas por meio de modelos computacionais de aprendizado de máquina (machine learning) que utilizam conceitos de segmentação semântica e de instância, detecção de objetos e mapeamento de calor. As técnicas de aprendizado profundo são semelhantes àquelas usadas em sites que solicitam ao usuário a identificação das imagens de faixa de pedestres ou de semáforos, por exemplo, antes de acessar informações consideradas de uso restrito. Ou seja, é preciso treinar a rede neural com milhares de exemplos, ensinando o computador a reconhecer os objetos de forma automática.

Dois artigos, publicados na revista Sensors, apresentam os modelos de detecção e contagem desenvolvidos, além dos resultados preliminares já obtidos.

O primeiro, Counting Cattle in UAV Images-Dealing with Clustered Animals and Animal/Background Contrast Changes (Contagem de gado em imagens de UAV – Lidando com animais agrupados e alterações de contraste de animal/fundo), tem autoria de Barbedo, Koenigkan e Patrícia Menezes e da pesquisadora da FMU Andrea Roberto Bueno Ribeiro.

O artigo propõe um algoritmo capaz de fornecer estimativas precisas para a contagem dos animais, mesmo em condições difíceis, como presença de animais agrupados, mudanças no contraste entre estes e antecedentes, o que é comum devido à heterogeneidade das fazendas de gado, e variações de iluminação. Algumas situações se mostraram desafiadoras, especialmente a falta de contraste entre os animais e o fundo, o movimento deles, grandes aglomerados de animais e a presença de bezerros.

Segundo os autores, novas soluções para rastreamento de animais serão investigadas em experimentos futuros. Os esforços também devem ser direcionados para a captura de imagens de outras raças de gado, tornando possível estender a aplicabilidade do algoritmo. Embora o algoritmo descrito no artigo tenha sido desenvolvido em função da contagem de gado, a metodologia pode ser adaptada a outras aplicações como detecção de navios ou de tendas em campos de refugiados, entre outras.

O segundo artigo da Sensors, A Study on the Detection of Cattle in UAV Images Using Deep Learning (Um estudo sobre a detecção de gado em imagens de UAV usando aprendizado profundo), foi escrito por Barbedo, Koenigkan, Thiago Teixeira Santos, também da Embrapa Informática Agropecuária, e Patrícia Menezes.

Nesse estudo, os experimentos envolveram 1.853 imagens contendo 8.629 amostras de imagens de animais. Com isso, foram treinados 900 modelos de redes neurais convolucionais, permitindo uma análise profunda dos diversos aspectos que impactam a detecção de gado usando imagens aéreas capturadas por drones. Os objetivos foram determinar a maior precisão possível que poderia ser alcançada na detecção de animais da raça Canchim, visualmente semelhante aos Nelore, além da distância ideal da amostra do solo para a detecção de animais e da arquitetura mais precisa.

Fonte: Embrapa Informática Agropecuária
Continue Lendo
Clique para comentar

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

três × 1 =

Bovinos / Grãos / Máquinas Desempenho

PIB do setor agropecuário apresentou crescimento de 2% em 2020

As contribuições positivas para o crescimento foram dadas principalmente pela soja, café e milho

Publicado em

em

Arquivo/OP Rural

O Instituto Brasileiro de Geografia e Estatística (IBGE) divulgou na quarta-feira (03) os dados do Produto Interno Bruto (PIB) referentes a 2020. Segundo o Instituto, a Agropecuária registrou alta de 2,0%, aumentando a participação no PIB de 5,1% em 2019, para 6,8% em 2020.

A partir dos dados do Levantamento Sistemático da Produção Agrícola (LSPA), e das pesquisas da Pecuária, o IBGE destacou que contribuições positivas para o crescimento do PIB foram dadas principalmente pela soja, cuja produção cresceu 7,1% em 2020, café, 24,3% e milho, 2,7%. Contribuição negativa foi observada na laranja, que teve uma redução de 10,6% na produção em relação a 2019, fumo (-8,4), e queda do desempenho de bovinos.

“Apesar das variações na produção, devido a problemas climáticos que afetam a Agropecuária, mesmo assim, em 24 anos, tivemos apenas três anos com redução do PIB”, aponta o  coordenador-geral de Estudos e Análises da Secretaria de Política Agrícola do Ministério da Agricultura, José Garcia Gasques.

Outros setores apresentaram queda no PIB, como a Indústria (-3,5%) e os Serviços (-4,5%). O PIB totalizou R$ 7,4 trilhões em 2020, a Agropecuária 439,8 bilhões, a Indústria 1,3 trilhão, e Serviço R$ 4,7 trilhões. Segundo o IBGE, tendo em vista os efeitos adversos da pandemia de Covid-19 em 2020, o PIB caiu 4,1% frente a 2019.

Fonte: MAPA
Continue Lendo

Bovinos / Grãos / Máquinas Estimativa

Soja supera irregularidades climáticas e sustenta recorde em 2020/21

Avaliação da StoneX aponta produção nacional de 133,5 milhões de toneladas, aumento puxado principalmente pelo RS

Publicado em

em

Divulgação/MAPA

Apesar dos atrasos no plantio da soja no Brasil e das precipitações irregulares, principalmente nos primeiros meses do ciclo, os volumes mais significativos de chuvas registrados a partir de janeiro beneficiaram o desenvolvimento da oleaginosa, mesmo com preocupações sobre o clima afetando a colheita. Segundo avaliação de março da StoneX, o ciclo 2020/21 deve atingir produção de 133,5 milhões de toneladas, variação de 0,54% frente ao registrado no mês anterior.

“O principal determinante desse crescimento foi a revisão dos números do Rio Grande do Sul, com aumento da área plantada e da produtividade. Também houve melhora dos rendimentos esperados em Goiás”, avalia a analista de inteligência de mercado do grupo, Ana Luiza Lodi.

No Rio Grande do Sul, é importante lembrar que o ciclo da oleaginosa começa na segunda metade de outubro, com janeiro e fevereiro sendo determinantes para o resultado final. “Mesmo com a irregularidade climática nos primeiros meses do ciclo da soja, as chuvas em janeiro e também em fevereiro permitiram a recuperação das lavouras em algumas áreas, principalmente do que foi plantado mais tarde, o que vai consolidando uma produção recorde, de 133,5 milhões de toneladas”, explica a analista Ana Luiza.

Mantendo-se as variáveis de demanda, os estoques finais da safra 2020/21 poderiam alcançar 3,84 milhões de toneladas, nível reduzido, mas consideravelmente superior à escassez observada no final do ciclo 2019/20.

Fonte: Assessoria
Continue Lendo

Bovinos / Grãos / Máquinas Pecuária

Preço ao produtor de leite acumula queda de 6,7% no primeiro bimestre

É a primeira vez em seis meses que o preço fica abaixo do patamar de R$ 2,00/l

Publicado em

em

Arquivo/OP Rural

O preço do leite no campo caiu pelo segundo mês consecutivo, acumulando queda real de 6,7% neste primeiro bimestre. De acordo com pesquisas do Cepea (Centro de Estudos Avançados em Economia Aplicada), da Esalq/USP, o preço do leite captado em janeiro e pago aos produtores em fevereiro recuou 2,2% na “Média Brasil” líquida, chegando a R$ 1,9889/litro. É a primeira vez em seis meses que o preço fica abaixo do patamar de R$ 2,00/l. Ainda assim, o valor é 34,5% maior que o registrado no mesmo período do ano passado, em termos reais, e representa um novo recorde de preço para o mês de fevereiro (descontando a inflação pelo IPCA de jan/21).

A desvalorização do leite no campo se deve ao enfraquecimento da demanda por lácteos, dado o contexto de diminuição do poder de compra do brasileiro, do fim do auxílio emergencial para muitas famílias, do recente agravamento dos casos de covid-19 e da elevação do desemprego.

Colaboradores consultados pelo Cepea informaram que, diante da instabilidade do consumo, houve um esforço das indústrias em ajustar a produção para manter os estoques controlados, de modo a evitar quedas mais bruscas de preços, tanto para os derivados quanto para o produtor. No entanto, o nível de estoques vem crescendo, e, desde dezembro de 2020, observa-se a intensificação da pressão exercida pelos canais de distribuição junto às indústrias para obter preços mais baixos nas negociações de derivados.

O desempenho ruim das vendas em janeiro influenciou negativamente o pagamento ao produtor pelo leite captado naquele mês. Pesquisas do Cepea, com apoio financeiro da OCB, mostraram que, na média de janeiro, os preços do leite UHT e do queijo muçarela negociados no atacado do estado de São Paulo caíram 6,8% e 8,9%, respectivamente, frente ao mês anterior, enquanto os do leite em pó se mantiveram praticamente estáveis. As cotações de leite spot em Minas Gerais também recuaram, 12,3% na média de janeiro.

Durante fevereiro, os derivados continuaram se desvalorizando, o que reforça a tendência de baixa para o produtor no mês que vem. Até o dia 25, houve queda de 5,4% nos preços do UHT, 8,1% para a muçarela e de 7,2% nos valores do leite em pó em São Paulo. No caso da média mensal do spot, em Minas Gerais, o recuo foi de 0,7% frente a janeiro.

Oferta

A pesquisa do Cepea apontou que, em janeiro, a captação das indústrias caiu 4,5% frente ao mês anterior, segundo o Índice de Captação Leiteira (ICAP-L), puxada pela redução média de 6,5% no volume adquirido nos estados do Sul do País. A expectativa de agentes do setor é de que, nos próximos meses, a oferta se reduza ainda mais em decorrência do início da entressafra. Além disso, a produção de leite deve ter impacto negativo diante das menores quantidade e qualidade das silagens neste início de ano, em decorrência de condições climáticas adversas no último trimestre de 2020. Ademais, a valorização considerável e contínua dos grãos (principais componentes dos custos de produção da pecuária leiteira) tem comprometido a margem do produtor, prejudicando o manejo alimentar dos animais e a produção.

Pesquisas do Cepea mostram que, em janeiro, o pecuarista precisou de, em média, 41,2 litros de leite para a aquisição de uma saca de 60 kg de milho, 16,3% a mais que em dezembro/20. Com isso, é importante pontuar que, mesmo diante de preços do leite em patamares considerados altos para o período do ano, a margem do produtor tem caído – o que desestimula o investimento na atividade e pode refletir em dificuldade na retomada da produção no segundo semestre.

Gráfico 1. Série de preços médios recebidos pelo produtor (líquido), em valores reais (deflacionados pelo IPCA de janeiro/2021)

Fonte: Cepea-Esalq/USP

Fonte: Cepea
Continue Lendo
Dia Estadual do Porco – ACSURS

NEWSLETTER

Assine nossa newsletter e recebas as principais notícias em seu email.